π November 2, 2020 β’
π 08:37 β’
π· Blog and Media β’
π 343
That was fun! The Online Anti-Discrimination Hackathon ran last weekend, a hakacthon co-organized by Ministerie van OCW, Inspectie SZW, Ministerie van BZK, and Hackathon Factory which revolved around “gender discrimination in data collection and labeling for automated assessment and selection of candidates.” Having ample experience in designing and developing AI-powered candidate selection systems, and the risks of algorithmic bias, I was happy to contribute to this hackathon with a few colleagues at Randstad Groep Nederland in several ways.
Talk on Algorithmic Bias Mitigation in Automated Recruitment
First, I gave a (virtual, pre-recorded) talk on algorithmic matching, algorithmic bias, and bias mitigation in the domain of automated recruitment. More specifically, I shared how and where we use AI and recommender systems to facilitate job and candidate matching at Randstad Groep Nederland, and more generally about the challenges of bias and the opportunities of bias mitigation. I showcased both examples of misuse of AI, which results in discriminatory systems, and examples of how AI can be used to actively reduce or mitigate bias in the recruitment process. See the recording of my talk below:
In addition, me and a colleague joined live interactive roundtable sessions during the hackathon, and we brought a panel of four subject-matter experts for one-on-one sessions with hackathon teams and participants.
David Graus, Randstad Groep Nederland, Commissie AI: βAI biedt enorme kansen om filterbubbels te doorbreken en bias te reducerenβ
David heeft een achtergrond in zoekmachinetechnologie waarmee hij inmiddels een carriΓ¨re heeft opgebouwd gericht op de ontwikkeling van personalisatie- en aanbevelingssystemen. In zijn huidige rol geeft David leiding aan de data scientists van Randstad Groep Nederland en is hij betrokken bij alle facetten van het bouwen van AI-systemen, van ideation tot aan het daadwerkelijk in productie brengen en monitoren van systemen. βUit ervaring weet ik dat je als AI-ontwerper en -bouwer over de mogelijkheden beschikt om personalisatie- en aanbevelingssystemen in de basis ethisch verantwoord op te zetten. AI biedt daarom grote kansen om filterbubbels te doorbreken en bias te reduceren. Als lid van de Commissie AI hoop ik de sector hierbij te helpen.β
π October 19, 2020 β’
π 11:50 β’
π· Blog and Writing β’
π 2,205
Leuk stuk van Lubach, maar als filterbubbelontkenner en iemand die een flink deel van z’n boterham verdient aan het bouwen aan soortgelijke “algoritmen” voel ik me wel geroepen wat nuance in te brengen π.
π September 26, 2020 β’
π 14:49 β’
π· Blog β’
π 13
After attending the beautiful virtual 14th ACM Conference on Recommender Systems (RecSys2020), I am happy to start looking forward to RecSys2021, which will be held in Amsterdam!
I am super excited to share that I’ve joined the organizing committee of RecSys2021 as local outreach chair, which means I’ll help out assisting the other chairs and linking the (local) industry and companies to the conference.
π July 6, 2020 β’
π 13:28 β’
π· Blog β’
π 238
Come join us in Diemen!
About Randstad
Work with impact. At Randstad Groep Nederland IT you keep the country moving, enabling people across sectors to do their work, getting pizza on your table and your suitcase on the plane. Your AI solutions mean tomorrow’s recruiter is smarter and faster but still embodies our human forward approach, combining tech with a personal touch and putting people first – including you. Constantly experimenting, working on new NLP use cases and matching systems or expanding our self-service data platform. If you bring the idea we will provide the freedom to explore, so you can help us shape the world of work.
Data Science @ RGN
Randstad IT is organized in a variation of the Spotify Engineering Model with squads, tribes, and chapters. Our data science chapter spans 12 data scientists, data engineers and machine learning engineers over 3 departments (IT, finance, and marketing), across 6 different teams. These teams work on recommender systems for algorithmic job matching, natural language processing and information extraction, forecasting, and more. We are further interested in AI fairness and auditing, explainability, and transparency.
Who are you?
We’re looking for students studying AI, data science, or related programs, for either graduation projects or regular internships. Fluency in python is required, and we expect our interns to work autonomously. However, as an intern you’ll be a fully fledged member of our chapter, which means you get to benefit from the knowledge that is being shared in our chapter.
π May 29, 2020 β’
π 12:32 β’
π· Blog β’
π 4
I have joined the board of SETUP, a Utrecht-based medialab established in 2010. SETUP’s mission is:
to educate a wide audience, providing them with the tools necessary to design this brave new world, and infuse it with human values and new-found creativity.
This mission perfectly fits my personal conviction that knowledge and understanding of technology through media/algorithmic-literacy β not fear and repression β is vital in progressing into our technology-infused future! See, e.g., what I wrote about it on the neutrality of algorithms, or “algorithmic literacy.”
Prior to joining their board, I have been following SETUP for a couple of years, joining some of their meetups, and giving a talk at one of their events in 2018 “leven met algoritmen.” I am very excited to start as a board member and help set up SETUP’s future!
[1] D. Graus, “Entities of interest β discovery in digital traces,” PhD Thesis, 2017. [Bibtex]
@phdthesis{graus2017entities,
title={Entities of Interest β Discovery in Digital Traces},
author={Graus, David},
year={2017},
month={6},
school={Informatics Institute, University of Amsterdam},
isbn={9789461828002},
url={https://hdl.handle.net/11245.1/51be80bb-1cbf-4633-8ff9-e3128e990bfa}
}
[2] D. Graus, M. Tsagkias, L. Buitinck, and M. de Rijke, “Generating pseudo-ground truth for predicting new concepts in social streams,” in Advances in information retrieval, Cham, 2014, p. 286β298. [Bibtex]
@inproceedings{graus2014generating,
author={Graus, David and Tsagkias, Manos and Buitinck, Lars and de Rijke, Maarten},
title={Generating Pseudo-ground Truth for Predicting New Concepts in Social Streams},
booktitle={Advances in Information Retrieval},
year={2014},
publisher={Springer International Publishing},
address={Cham},
pages={286--298},
url={https://doi.org/10.1007/978-3-319-06028-6_24},
doi={10.1007/978-3-319-06028-6_24},
series = {ECIR '14}
}
[3] D. Graus, D. Odijk, and M. de Rijke, “The birth of collective memories: analyzing emerging entities in text streams,” Journal of the association for information science and technology, vol. 69, iss. 6, pp. 773-786, 2018. [Bibtex]
@article{graus2018birth,
author = {Graus, David and Odijk, Daan and de Rijke, Maarten},
title = {The birth of collective memories: Analyzing emerging entities in text streams},
journal = {Journal of the Association for Information Science and Technology},
year = {2018},
volume = {69},
number = {6},
pages = {773-786},
doi = {10.1002/asi.24004},
url = {https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.24004},
eprint = {https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.24004},
}
[4] D. Graus, M. Tsagkias, W. Weerkamp, E. Meij, and M. de Rijke, “Dynamic collective entity representations for entity ranking,” in Proceedings of the ninth acm international conference on web search and data mining, New York, NY, USA, 2016, p. 595β604. [Bibtex]
@inproceedings{graus2016dynamic,
author = {Graus, David and Tsagkias, Manos and Weerkamp, Wouter and Meij, Edgar and de Rijke, Maarten},
title = {Dynamic Collective Entity Representations for Entity Ranking},
year = {2016},
isbn = {9781450337168},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/2835776.2835819},
doi = {10.1145/2835776.2835819},
booktitle = {Proceedings of the Ninth ACM International Conference on Web Search and Data Mining},
pages = {595β604},
numpages = {10},
keywords = {fielded retrieval, entity retrieval, entity ranking, content representation},
location = {San Francisco, California, USA},
series = {WSDM '16}
}
π February 4, 2020 β’
π 10:03 β’
π· Blog β’
π 4
I was invited by UvA’s Information, Communication and the Data Society (ICDS) to participate in a panel at the Conference on Privacy and Data Protection, which was focused on AI.
The recording of the panel is now online, watch me telling a room full of (highly) privacy-aware (and cookie-averse) people that Cambridge Analytica nudging people to “politically activate them” with tailored information can be a “democratic good” π .
π November 27, 2019 β’
π 11:38 β’
π· Blog and Writing β’
π 99
For the Media Perspectives (“platform for media & innovation”) newsletter I wrote a column on the future of media & AI: Algoritmewijsheid. Read it below (in Dutch):
Enjoyed giving a lecture at the SIKS Course “Advances in Information Retrieval” at the Mitland Hotel in Utrecht. I also pitched DIR 2019 π (as evidenced by the picture above from Arjen). See my slidedeck below!
This talk is loosely based on (part of) the talk I gave at the ACM RecSys Summerschool, but I added a few slides on dealing with implicit feedback (= clicks), and popularity bias.