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Introduction

Machine learning applications can unintentionally

amplify biases, particularly in sensitive domains like

recidivism prediction and facial recognition, with gender

and race being common dimensions of bias. 

Our paper addresses fairness within candidate

recommender systems (CRS), focusing on mitigating

bias to prevent discrimination in employment

recommendations.

We introduce a novel approach that integrates two

fairness gates (FGs) at both pre- and post-processing

stages to improve fairness without significantly

compromising utility.

Methodology

Our work relies on a learning-to-rank powered candidate

recommendation system (CRS)

We introduce two Fairness Gates: FG1 through synthetic

data generation to balance gender distribution in

training datasets, and FG2 for re-ranking to ensure

gender balance in candidate recommendations

For evaluating the impact of fairness gates on utility and

fairness, we report respectively Normalised Discounted

Cumulative Gain (NDCG) and Normalized Discounted

Cumulative Kullback-Leibler Divergence (NDKL)

Results

We observe a significant uplift in NDCG scores when

training CRS models on synthetic data, especially in

heavily imbalanced scenarios.

We demonstrate that the application of both FGs leads

to improved fairness, as measured by reduced NDKL

scores after re-ranking, across all levels of data

imbalance.
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Conclusion

We affirm the success of the CRS pipeline in mitigating bias

through the integration of synthetic data and fairness

gates. 

Our approach provides a viable pathway to fair and useful

candidate recommendations within the CRS pipeline.

Future Work

We recommend exploring additional evaluation methods,

addressing data scarcity, and refining fairness rules to

account for real-world job domain skewness. 

We encourage further research into less data-intensive

techniques and the potential of synthetic data-driven

augmentation to enhance the CRS pipeline.
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