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Abstract
This research investigates the extent to which a reinforcement learning agent can learn the heuristics of a combinatorial
optimisation problem (CO), personnel scheduling, from a graph representation. In recent years, reinforcement learning has
emerged as an effective data-driven approach to solving CO problems, a subset of mathematical optimisation that appear
in many real-world tasks and can be costly to solve in terms of computing power and/or human resource. CO problems
often have an underlying graph structure with relational inductive biases that can be exploited by powerful graph neural
networks. Across a range of problem complexities, our approach was able return consistently high average reward, performing
significantly better than baselines.
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1. Introduction
Matching personnel with shifts in a way that ensures
coverage, legality and employee well-being is a process
that becomes exponentially more complicated as scale
increases [1]. Anonymized for review is a human resource
consulting firm responsible for scheduling over 40,000
employees into more than 70,000 shifts every week. Em-
ployees are matched with work from several different
industries such as retail, healthcare, and catering. Staff
shortages and increased demand have made this pro-
cess even more challenging in recent years. Personnel
scheduling (PS) as an operations research problem has
generally been known as the Nurse Rostering Problem
(NRP) [2]—a reference to the difficult task of assigning
nurses to shifts in a 24-7 cycle—and has been studied since
the 1960s by researchers from computer science, mathe-
matics, operations research and medicine [2]. Scheduling
problems carry hard and soft constraints; a typical hard
constraint in NRPs is that there is sufficient staff cover-
age at all times. A soft constraint could be an employee’s
preference not to work on weekends [2]. For anonymized
for review, personnel scheduling is characterised by high
variance between clients (e.g. different retail companies)
in terms of problem requirements; planning horizon, shift
types, requisite skills and volume of staff and shifts vary
significantly. For example, a single client could require
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as many as 2,000 shifts to be scheduled in one week, or
as few as 2. The average is somewhere closer to 80 shifts
per week per client. In this context, to help clients/plan-
ners to fill shifts in an efficient way there is a need for
an automated technique that recommends personnel for
given shifts by considering the constraints.

Researchers have developed linear models that find
optimal solutions for scheduling problems by exploring
the search space of possible solutions [2]. Known as ex-
act methods, these algorithms simulate a decision tree
where each node of the tree is a possible state that the
scheduling problem can take and the solutions are situ-
ated at the leaves of the tree. Due to the enormous and
complex search spaces of modern scheduling problems,
exact methods alone are not viable. Furthermore, an ’op-
timal’ solution is usually not the goal; administrators
want to quickly generate a high quality schedule that
satisfies all hard constraints and as many of a wide range
of soft constraints as possible. The other broad class of
solutions is heuristic methods which make use of higher
level knowledge of a problem to take shortcuts through
the search space. Reliance on domain expertise and hand-
crafted features means that these methods are susceptible
to changes in the problem formulation. Neither of these
approaches generalise well to new problems [2].

Personnel scheduling can be framed as a combinatorial
optimisation problem and there is a growing body of re-
search using machine learning techniques to solve such
problems [3]. CO is the process of searching for an opti-
mal solution amongst a finite set of possibilities. Classic
problems include the Travelling Salesman (TSP)—where
the objective is to find the shortest route through a list
of cities—and the knapsack problem, where the objec-
tive is to maximise the value of objects in a knapsack
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without violating a weight constraint [3]. If a CO prob-
lem is modelled as a sequential decision-making process,
neural network function approximation can be used to
learn features of a problem and use them to optimise the
decisions of an agent [4]. This is the essence of Deep
Reinforcement Learning (RL), a class of algorithms that
have attained some notoriety in recent years due to eye-
catching performance on various games [5]. Many CO
problems naturally induce an underlying graph structure
of nodes and edges [6]. By representing a problem using
graph neural networks (GNNs), the learned vector rep-
resentation encodes crucial structures that improve the
ability of an algorithm to learn from such problems and
solve them efficiently [7]. CO is at the heart of many real
world problems; vehicle routing, microchip design, big
data processing, and numerous forms of scheduling tasks,
to name a few. This paper seeks to investigate whether a
RL agent can learn to solve personnel scheduling prob-
lems represented as graphs.
Research question: To what extent can reinforcement

learning optimise personnel scheduling problems?
There are many ways to design experiments to an-

swer this research question. We chose to keep the RL
algorithm and problem constraints fixed throughout the
experiments and instead to focus on problem complexity
and reward function. Problem complexity can be con-
trolled by the number of shifts and also by the ratio be-
tween shifts and employees, both of which determine the
probability that a correct action can be taken by chance.
An increase in problem complexity will therefore lead to
increased constraint violations from a random agent. A
reward function determines whether an agent’s actions
are rewarded with a positive value or punished with a
negative value. Reward is averaged over a set number
of episodes (complete runs through a problem) as this
provides a stable measure of an agent’s performance over
time.

In this context, we focus on the following sub-research
questions:

1. To what extent does increasing problem complex-
ity affect average reward?

2. To what extent does reward shaping affect aver-
age reward?

2. Related Work
Substantial research has been conducted into personnel
scheduling and combinatorial optimisation more gener-
ally.

2.1. Personnel Scheduling Methods
The most common methods - exact, heuristic, and hybrid
- have different ways of dealing with the complexity of

scheduling problems. The complexity of a NRP is deter-
mined by the combination of constraints and parameters
[1]. Usually, problems with a large number of possible
shift types, a large number of nurses and/or a long plan-
ning period, are expected to require more computational
effort. In their comprehensive review, Burke et al [2],
declared that exact methods ”cannot cope with the enor-
mous search spaces that are represented by real problems
(at least on their own)”. However, innovative modelling
techniques have been used to formulate integer linear
programs (ILPs) with huge numbers of variables. Branch-
and-price, a technique that augments linear relaxation -
a method for solving hard ILPs by temporarily relaxing
the integer constraints - by dropping a proportion of the
constraints and then checking if the subsequent solution
is feasible, was used by [8]. Modelling complex ILPs is
challenging and powerful solvers are needed to run them
[9].

The most common form of heuristic optimisation is
meta-heuristics, which use strategies inspired by other
systems to guide the search process. For example, Ant
colony optimisation meta-heuristic algorithms build so-
lutions by mimicking the foraging behaviour of ants [10].
Although effective and simpler to implement than exact
methods, heuristics need to be revised if the problem
statement changes slightly [2]. Furthermore, costly and
error-prone feature engineering can introduce biases that
do not align with the real world and lead to imprecise
decisions.

Methods that hybridise exact methods with heuristic
approaches are known as hybrid approaches and Burke
et al. [2] went so far as to say that ”some kind of (hybrid)
heuristic method offers the only realistic way of tackling
such difficult and challenging problems in the foreseeable
future.”

In general, the models seen in the literature are com-
plex, narrowly applicable to a certain environment, and
lack generality, but it is difficult draw conclusions when
there is so much variance between studies. We can say
that, by considering each instance of a problem in isola-
tion, these existing methods do not exploit the fact that
the problem instances often come from a common real
world underlying distribution.

2.2. Machine Learning Methods for CO
problems

For real world CO problems, it is highly likely that prob-
lem instances will share certain characteristics or pat-
terns [6]. Data-dependent machine learning approaches
can exploit these patterns, leading to the development of
faster solutions for practical cases.

A neural network model was deployed on a CO prob-
lem as far back as 1996 when a Hopfield network was
used by Mańdziuk [11] to solve instances of the Travel-



ling Salesman Problem. Chen et al. [12] used neural net-
works to guide a tree search. By representing schedules
as matrices, a network could analyse existing solutions
and learn to predict the probability of each node leading
to a solution. Václavík et al. [13] use classifiers to discard
bad solutions and speed up a subsequent heuristic search.

Reinforcement learning (RL) refers to a computational
approach to learning from interaction [9]. In RL, an agent
interacts with a Markov Decision Process (MDP) with
the goal of maximising some reward generated by the en-
vironment. A combination of a state of the environment
and an available action, a state-action pair (s, a), has an
expected return known as a state-action value function,
or Q-value. A policy is a conditional distribution that the
agent uses to select actions. The main aim of RL is to
find an optimal policy - a conditional distribution used
by the agent as a strategy to select actions - such that the
state-action value function is optimised.

Broadly, there are two categories of RL algorithm;
those which learn by optimising the value function to
increase reward at each step and those which directly
optimise the policy to increase total expected reward
[14]. Policy-based methods directly model the agent’s
policy as a parametric function. By collecting previous
decisions that the agent made in the environment we can
optimise the parameters of the network to maximise the
expected reward of the process [14].

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑅𝑡
∇𝜋(𝑎𝑡|𝑠𝑡, 𝜃)
𝜋(𝑎𝑡|𝑠𝑡, 𝜃)

An episode refers to all the states of an environment
that come in between an initial-state and a terminal-
state, generated from the sequence of actions taken and
changes observed in the environment. An episode can
be terminated due to success or failure, and, over many
episodes, the parameters of a policy network are trained
until they can achieve good performance on an unseen
problem. Stronger convergence guarantees are available
for policy-based methods than for value-based methods.
One of the main strengths of RL is that agents can learn
the rules of an environment without the need for explicit
programming or examples of optimal endpoints. A key
aim of RL research is to train models that make decisions
to solve real problems [15]

Reinforcement Learning (RL) methods were first ap-
plied to CO by Zhang and Dietterich, 1995, with a model
designed to solve the NP-Hard job-shop problem [16].

A growing body of research uses RL in combination
with graph neural networks (GNNs), a type of function
approximator designed to operate directly on a graph
structure [17]. Whenever there is a set of entities that
interact with one another or are related in any way, they
can be expressed in the form of a graph [6]. GNNs are
structurally similar to convolutional neural networks
(CNNs) which are mostly used for image classification.

CNNs get their name from the process of convolving the
input vectors with a sliding kernel which reduces the
size of an image whilst exploiting its spatial structure.
Accounting for the underlying structure of the data in-
troduces an inductive bias which promotes learning and
leads to better results [7]. The inductive bias of a learning
algorithm is the set of assumptions that the learner uses
to predict outputs for new data. GNNs also perform com-
putations over input data in a way that exploits spatial
structure, a process known as message passing. Node
and edge feature vectors are propagated by an exchange
of information (messages) between adjacent nodes.

Intuitively, it makes sense that a node might be repre-
sented by the average of the connections to its neighbours
and in this way the spatial information of the graph is
maintained. It also means that the number of message
passing layers determines how far a signal can travel;
with 2-layers, the message passing happens twice so the
message travels two hops away. There are many GNN ar-
chitectures optimised for different functions; node, edge,
or graph classification, using features stored at the node,
edge or both. The promise of GNNs is that the learned
vector representation encodes crucial graph structures
that help solve a CO problem more efficiently [6].

Mirhoseini et al. [18] developed a learning-based ap-
proach to chip placement, one of the most complex and
time-consuming stages of the chip design process. Ex-
ploiting the graph structure of netlists (a description of
the connectivity of an electronic circuit), Mirhoseini et al.
[18] used a GNN to compute features of netlist nodes and
create a rich representation for learning. Mirhoseini et al.
[18] claim that their method is the first that can quickly
generalise to previously unseen netlists and produce ’su-
perhuman’ results without the need for human experts
in the loop. In the opinion of Cappart et al. [6], this study
is only scratching the surface of ”the innovations that
can be enabled from a careful synergy of GNNs and CO”.

Kool et al. [15] represented travelling salesman prob-
lems as graphs and used an encoder-decoder GNN as a
parameterised policy to make decisions on which node
to visit next. An encoder transforms input data into
embeddings of a specific dimensions. The decoder then
transforms the embeddings to the required output dimen-
sions. The solution is constructed incrementally, adding
one node at a time. The policy network is trained us-
ing the REINFORCE algorithm, a policy gradient method.
The motivation for this choice was greater efficiency than
a value function approach. Kool et al. [15] report signif-
icantly improved results over recent learned heuristic
approaches to TSP. Their solution worked on problems
with up to 100 nodes and generalised to 2 variants of
the problem using the same hyper-parameters. They are
clear that their goal is not to outperform specialised TSP
algorithms, but to show that their approach is flexible
enough to generalise to similar problems.



After a thorough search of the literature, there was
no credible study found to be using an RL algorithm
and graph representations for personnel scheduling. The
research most relevant to our aims is Kool et al. [15]
which has many useful insights.

3. Methodology
Our goal is to train an agent to sequentially assign em-
ployees to shifts in an acceptable configuration. A sched-
ule is acceptable if the constraints are not violated. The
foundation of this research is a pipeline that ingests a
pool and a shift schedule and outputs a trained schedul-
ing agent. We train models on a fixed set of problems
in order to generate an agent that is capable of solving
general, previously unseen problems. The pipeline was
designed to take pool and shift schedule input of any
size, adapting the parameters of the environment, graph
representation, and Policy GNN accordingly.

Figure 1: Pipeline

• A pool csv containing a list of employee ids, and a
schedule csv containing a list of shift ids, are the initial
input. The schedule csv also contains features for
each shift: day of week and time of day (morning or
evening).

• A custom OpenAI Gym RL environment takes the
input csvs and combines them into a single matrix.

• The length of an episode is equal to the number of
shifts in the schedule csv. At each step in an episode,
thematrix is converted to a bipartite graph and passed
through the GNN.

• The GNN outputs a policy; a probability distribution
over the employee / action space.

• The agent takes actions according to the policy and
updates the weights of the policy network based on
the loss function.

• Repeat until a terminal state is reached: all shifts are
assigned.

Shifts Problem Count Avg. Ratio Min Ratio Max Ratio

3 70 0.74 0.375 1.5
4 70 0.98 0.500 2.0
5 70 1.23 0.625 2.5
6 70 1.47 0.750 3.0
7 70 1.72 0.875 3.5
8 70 1.96 1.000 4.0

Table 1
Overview of the scheduling problems used for training the
scheduling agent. 420 in total problems with 6 different shift
counts and range of shift-employee ratios. The number of
shifts, and the ratio between shifts and employees, determine
the complexity of our scheduling problems: the probability
that a correct action can be taken by chance.

3.1. Data
At anonymized for review, employees are grouped into
pools which act as a pre-filter for eligibility; anyone as-
signed to a pool is eligible for shifts assigned to that pool.
A pool represents an instance of a scheduling problem;
the employees and shifts must be combined in a way that
provides acceptable coverage and respects employment
law and employee preference. Computational complex-
ity increases with shift count and shift-employee ratio
meaning that anonymized for review data includes many
highly complex scheduling problems. Furthermore, the
data contains many features with high cardinality, such
as shift length and start time of a shift. To test the viabil-
ity of an RL approach, simpler problem instances were
required.

Inspired by the characteristics of anonymized for re-
view data, we created synthetic schedule and pool data
sets that can be combined to created simplified schedul-
ing problems. The aim is to create problems that test
an agent's ability to learn to satisfy a single constraint:
the same employee can’t work sequential shifts. This
constraint has to be learned from the features of the
problems.

Synthetic schedules contain shift id and 2 features; day
of week (Monday - Friday) and time of day (morning or
evening). Schedule shift count ranges from 3 to 8 and
pool employee count ranges from 2 to 8. By combining
these schedules and pools, we created a training set of
420 unique problems. Full details of the training set can
be seen in Table 1. Functions were created to manage
the problem combinations and check for uniqueness /
duplicate problems. Another function randomly gener-
ates new, unseen problems of variable shift count and
shift-employee ratio, for testing.



3.2. Pipeline
So that a model can learn to find acceptable solutions
to the scheduling problems, we define a Reinforcement
Learning framework specific for this task, similar to Kool
et al. [15]’s framework for tackling Travelling Salesman
problems. The aim is to optimise the reward received for
taking actions (assigning workers) at each step (shift). In
this framework, an encoder-decoder graph neural net-
work is used to estimate a probability distribution over
the actions available at each state of a problem. The en-
coder produces embeddings of all input nodes, whilst the
decoder outputs log probabilities for each available ac-
tion. To train this policy model, we used a policy gradient
method called REINFORCE.

3.2.1. REINFORCE

REINFORCE was proposed by Williams [19]. We start
by initialising a random policy which the REINFORCE
algorithm takes as input. The agent collects the trajec-
tory of an episode from current policy, storing actions,
states and rewards as a history. For each episode we
calculate the reward and use it to evaluate the policy.
For each action in the episode, the loss is calculated as
the probability (according to the policy) of choosing the
action, multiplied by the reward received. The loss is
then back-propagated through the network to update
the policy, increasing the probability that the agent will
choose the actions that lead to higher reward in the next
episode.

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑅𝑡
∇𝜋(𝑎𝑡|𝑠𝑡, 𝜃)
𝜋(𝑎𝑡|𝑠𝑡, 𝜃)

The encoder-decoder policy network is implemented us-
ing the Deep Graph Library.

3.2.2. Policy Network

Figure 2: Example of a graph representation of a scheduling
problem with 4 shifts and 2 employees. A bipartite graph has
two distinct sets of nodes with edges connecting each node
in one set with each node in the other. These graphs can be
used as input to a graph neural network.

For the agent’s policy, we implemented an encoder-
decoder GNN architecture, similar to the model used
by Kool et al. [15]. The building blocks of the GNN are

from the Deep Graph Library, which supports a range
of GNN architectures on top of the PyTorch framework
and also provides graph building functions. An example
scheduling problem graph representation can be seen in
Figure 2.

The role of graph neural networks is to distill informa-
tion about the type and connectivity of a node within a
large graph into low-dimensional vector representations
which can be used in downstream tasks. Our downstream
task is to output log probabilities for each action in the
action space.

The encoder produces embeddings of all input nodes.
To do this, it takes a graph representation of the current
state of a scheduling problem as input and uses message
passing convolutional layers to update and aggregate the
embeddings.

ℎ𝑙+1𝑖 = 𝜎 ( ∑
𝑚∈𝑀𝑖

𝑔𝑚(ℎ
(𝑙)
𝑖 , ℎ(𝑙)𝑗 ))

Then, at each time step, the decoder network calculates
the inner product of the current shift’s node features and
the worker edge features, which serves as a compatibility
score. The decoder calculate this score for problems
of any size. The softmax output of these compatibility
scores are the probabilities for the policy.

The number of nodes in the input graph reflects the
count of shifts and employees in the scheduling prob-
lem. Shift features are consistent (5 days of week and 2
times of day) but the employee features - which indicates
whether an employee as been assigned to a specific shift -
vary with employee and shift count. The network needs
to be able to process graphs of different sizes without
being re-initialised with the parameters of the current
graph, which would reset the learned weights. To achieve
this, we designed the architecture to store the employee
feature data in the edges, linear transformation of em-
ployee features could be performed at each step. This is
illustrated in Figure 3. We use a message passing layer
that incorporates edge data in it’s update and aggregation
functions. The design of this layer was proposed by [20]
:

ℎ(𝑙+1)𝑖 = 𝜎(∑
𝑟𝜖𝑅

∑
𝑗𝜖𝑁 𝑟(𝑖)

𝑒𝑗,𝑖𝑊
(𝑙)
𝑟 ℎ(𝑙)𝑗 + 𝑊 (𝑙)

0 ℎ(𝑙)𝑖 )

where 𝑁 𝑟(𝑖) is the neighbor set of node 𝑖 w.r.t. relation
𝑟. 𝑒𝑗,𝑖 is the normaliser. 𝜎 is an activation function. 𝑊0 is
the self-loop weight.

These edge features would allow us to measure im-
portant statistics such as total shifts allocated for each
employee without any hard-coding with of problem size.
These statistics could be used to add additional con-
straints such as minimum / maximum hours worked per
employee.

The network has a fixed learning rate of 1e-3. The
encoder uses 2 convolutional layers, 5 × 32 shift embed-
dings and 𝑛 × 32 employee embeddings, where 𝑛 = to the



Figure 3: This figure shows 2 scheduling problems with different shift counts in matrix and graph form. By using a fixed
number of shift features for each problem size (highlighted in yellow), the same linear transformation (5 × 32) can be applied to
the feature data of different sized graph representations. The employee features, which indicate an assignment of employee to
shift, are stored in the edges. A red edge indicates an assignment. The employee feature data is transformed to 𝑛 × 32, where 𝑛
= to the number of employee nodes. Indexing starts at 0 (e.g. shift 0) and all features are one-hot encoded. With the exception
of employee features, the first value for each feature is dropped to reduce collinearity, in accordance with standard practice.

number of employee nodes. The decoder uses 32 × 32 em-
beddings of the features for the current shift and 32 × 32
embeddings for each employee.

The process of repeating episodes to train the policy
network is managed by a custom Open AI Gym environ-
ment.

3.2.3. Open AI Gym

OpenAI’s Gym library is a popular choice for implement-
ing environments for RL. It’s main building block is a
Python class, Env, which simulates the environment you
want to train your agent in. There are many standard
environments available, such as the Atari games used by
DeepMind [21], and it supports custom environments.
The key components of an environment are the state
space, action space, reward function. For the state space
of our custom scheduling environment, we combine a
pool and a schedule into a matrix. The length of the
matrix equals the number of shifts, and width of the ma-
trix equals the number of shift features plus the number
of employees in the pool. For each shift, the agent can
assign an employee from the pool, therefore the action
space is equal to the number of employees. The reward
function is adjusted as part of the experimental setup
but essentially it rewards the agent when an acceptable
schedule is created. Or rather, it punishes the agent when
constraints are violated. Another key part of the environ-
ment is the step function, which takes the agents action
as input and updates the state and reward accordingly.

4. Experimental Setup
There are many possible variants for the design of this re-
search, such as RL algorithm, training problem complex-
ity, feature engineering, reward function and network
architecture, to name a few. We have chosen to focus
on reward function and problem complexity. Reward is
based on performance with regards to a single constraint:
an employee cannot work simultaneous or consecutive
shifts. Given time constraints, hyper-parameter tuning
was not performed for this study. The code can be viewed
on github.

Average reward is used to evaluate a models perfor-
mance. Reward is averaged across the previous 100
episodes to better capture an agent’s long-term behav-
ior. In a real world setting, the constraint we used is
considered a hard constraint meaning that a violation
renders the solution unacceptable. A solution could fea-
sibly have a high reward but be unacceptable due to a
single constraint violation. We used an additional metric,
’percentage acceptable’ to measure the number of accept-
able solutions produced by the agent: a solution with a
maximum score and therefore no constraint violations.

4.1. Reward Functions
TSPs have an inbuilt cost, tour length (the cumulative
distance between points), which the agent in Kool et al.
[15] tries to minimise. There are examples of TSP solvers
that apply cost (negative reward) incrementally (after

https://anonymous.4open.science/r/automated_personnel_scheduling_rl_gnn


each stop)—which has been shown to encourage greedy
behaviour—and at terminal states (when the tour is com-
plete) [15]. As there is no implicit reward or cost for
scheduling problems, we chose an arbitrary total reward
value of 1. Constraint violations results in a negative
reward. Constraint violations are calculated based on the
features in the schedule data: Assigning 2 shifts on the
same day to an employee is a constraint violation. Ap-
plying shifts on subsequent days to the same employee
is a constraint violation only if shift 1 is in the evening
and shift 2 is in the morning. The cost of a constraint vi-
olation is 1/(number of shifts-1) because it is not possible
to have a violation on the first assignment.

The effect of reward function on performance is tested
by comparing the performance of 3 reward functions;
1) calculating reward at the terminal state of an episode
(Terminal), 2) calculating reward at every step (Step),
and 3) assigning half of the reward stepwise, and the
remaining half at a terminal state as reward for an ac-
ceptable solution (Step Bonus).

4.2. Problem Complexity
Problem complexity can be increased in two ways; by
the number of shifts and also by the ratio between shifts
and employees. More shifts means more decisions for
the agent to take, so there is more chance of a constraint
violation occurring. The effect of shift-employee ratio is
illustrated in 4, which shows a schedule and two pools.
Combining the schedule with pool 1 has a higher ratio
than for pool 2, which reduces the number of actions an
agent can take without incurring a constraint violation.

Models were trained on 420 problems with between 3
and 8 shifts across 10,000 episodes. This means that the
agent would see the same problem many times during
training.

Models were tested on 500 problems from a range of
complexity distributions, as can be seen in Table 2. The
agent sees each problem once only.

The test problems have two levels of shift-employee
ratio: an ’average’ ratio of between 1.2 and 2.8, which
reflects the first and third quartiles for shift-employee
ratio in the anonymized for review data, and a ’high’ ratio
of between 2.9 and 5 to reflect themore complex problems
seen in the data.

5. Results
Models were trained on 5 different seeds and each model
was tested on every problem twice. The results were
averaged across both runs for all 5 models. We tested
the significance of our results using Welch’s t-test, which
doesn’t assume equal variance between groups. Results
are summarised in Table 3.

Figure 4: The effect of shift-employee ratio on action space.
Green squares represent actions that will lead to an acceptable
solution.

Shifts Ratio Range Problem Count

3-8 1.2-2.8 50
3-8 2.9-5 50
9-14 1.2-2.8 50
9-14 2.9-5 50
15-18 1.2-2.8 50
15-18 2.9-5 50
19-23 1.2-2.8 50
19-23 2.9-5 50
24-30 1.2-2.8 50
24-30 2.9-5 50

Table 2
Summary of test set problems showing size, shift-employee
ratio and count of unique problems.

Across all experiments, the best performing model was
the Step Bonus reward function (mean=0.89, standard
deviation=0.22) which returned significantly higher av-
erage reward than Random baseline (m=0.49, sd=0.49),
p<.05. Step Bonus also performed significantly better
than the other reward functions Step (m=0.62, sd=0.62),
p<.05, and Terminal (m=0.58, sd=0.57), p<.05.

In terms of problem complexity, average reward was
significantly higher for Average ratio problems (m=0.74,
sd=0.39) than for High ratio problems (m=0.65, sd=0.65),
p<.05. This effect was observed for each model. The
effect of increasing shift count is less clear. Excluding
results from the Random agent, problems with a max shift
count of 8 (ms8) (m=0.72, sd=0.36) show significantly
higher average reward than problems with max shift
counts of 14 (m=0.68, sd=0.68), 18 (m=0.68, sd=0.68) and
23 (m=0.68, sd=0.68). However, there was no signifi-
cant difference in average reward observed between the
smallest problems (ms8) and the largest problems (ms30)
(m=0.72, sd=0.41). Furthermore, ms30 showed higher
average reward than ms23, ms18, and ms14. These ef-



Figure 5: Performance on problems with Average Shift-Employee ratio. Performance on both metrics is stable across levels of
Problem Complexity, even increasing slightly.

Figure 6: Performance on problems with High Shift-Employee ratio. Performance is less stable and significantly lower on
high ratio problems.

fects were observed across both Average and High ratio
problems.

Figure 5 shows the performance of the 3 reward func-
tions against a Random agent baseline on average ratio
scheduling problems of increasing shift count.

Figure 6 shows the performance of 3 reward functions
against a Random agent baseline on high ratio scheduling
problems of increasing shift count.

6. Discussion
Personnel scheduling is a real-world combinatorial opti-
misation task that requires significant time and expertise
to manage effectively. In this paper, we developed a
scheduling problem solver based on a framework from
Kool et al. [15], which was designed to solve another CO
problem, the travelling salesman problem. Compared to
previous works, which used problem-specific approaches,
this framework is an opportunity for a data-driven ap-
proach to personnel scheduling that could be of great

Average Reward % Acceptable
Model

Random agent 0.49 14.00
Step 0.62 51.68
Terminal 0.58 51.56
Step Bonus 0.89 79.60

Table 3
Summary of results across all test problems by model (reward
function). In a real world setting, a hard constraint violation
invalidates a solution. % Acceptable indicates the percentage
of solutions that had no constraint violations and earned a
maximum reward of 1.

practical value. We created a graph representation of
each combination of shift schedule and employee pool
for use in a GNN. The GNN functions as the policy, using
valuable information about the node in the context of
the graph to guide the decisions of an agent. The param-
eters of the network are trained using the REINFORCE



algorithm. To measure the ability of the RL scheduler
to optimise scheduling problems, we used average re-
ward and percentage acceptable metrics. We compared
performance across 3 different reward functions and 10
different levels of problem difficulty.

The Step Bonusmodel achieved consistently high per-
formance across all problems, significantly better than
the baseline and the other reward functions. Despite the
fact that the problems in training set had a max shift
count of 8, the trained Step Bonus agent was able to
able achieve maximum score on 77% of High ratio, max
shift 30 problems.

With a focus on an academic problem, rather than a
real world application, [15] were able to test their model
on several standard sets of travelling salesman problems
(plus variants) and compare the performance to other
studies that used the same data. There are standard test
sets for personnel scheduling problems but they were
out of scope for this research as these problems generally
have more complicated constraints than the one we used.
A comparison that can be made between this study and
[15], is the effect of node count on performance. The
cost for TSPs is positively correlated to the number of
nodes, so performance appears worse (higher cost) for
larger problems. However, [15] observed performance
on 100 node TSP problems comparable to state of the
art TSP solvers, suggesting that their graph model scaled
well to larger problems. A similar case could be made
for this research, as we saw no significant difference
in performance between the hardest (ms30, High ratio)
problems and the easiest (ms8, average ratio).

Because the size of the reward / cost for our system is
negatively correlated to the number of shifts in a prob-
lem, violations are punished less harshly for big problems.
However, the award of a bonus reward of .5 for an ac-
ceptable solution should counteract this.

Another explanation is that shift count and shift-
employee ratio are not the best or only way to mea-
sure the complexity of a personnel scheduling problem.
The consistently high rewards we observed for the Step
Bonus model suggest that the network was able to learn
the constraint - no simultaneous or consecutive employee
assignments - and that it was no harder to exploit it for
a large problem than a small one. Aside from the bonus
reward, a decision made at time-step 𝑡 doesn’t effect 𝑡 + 1
. In a real world scheduling problem, this is unlikely to
be the case as there will be additional constraints to con-
sider. The most obvious constraint to add to this research
would be one to ensure that each worker in the pool is
assigned to at least one shift.

If, as expected, adding additional constraints increases
complexity to an extent that performance is gets worse,
there are architecture changes that could be made make
themodel more effective. The RL algorithmwe have used,
REINFORCE, is one of the most simple policy gradient

methods. State of the art algorithms could be used, but a
simple change worth testing is the use of a baseline, as
seen in [15]: ”A good baseline reduces gradient variance
and therefore increases speed of learning”. As Figure
7 shows, Step Bonus appears to converge on a stable
reward after only a few hundred episodes, but this could
well change if more constraints were added.

7. Conclusion
The results show that, with the right reward function, an
RL agent was able to solve simplified personnel schedul-
ing problems across a range of shift counts and shift-
employee ratios. We have shown that an agent can learn
the constraints of a combinatorial optimisation problem
from data. For future work, additional evaluation using
real world data is of importance to better understand the
range of applicability of our approach.
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