
Transfer learning for multilingual vacancy text generation
Anna Lőrincz

University of Amsterdam
anna@lorincz.org

David Graus
Randstad Groep Nederland

david.graus@randstadgroep.nl

Dor Lavi
Meta

dorlavi@meta.com

João L. M. Pereira
University of Amsterdam

INESC-ID and IST, Universidade de Lisboa
j.p.pereira@uva.nl

Abstract

Writing job vacancies can be a repetitive and ex-
pensive task for humans. This research focuses
on automatically generating parts of vacancy
texts, i.e., the benefits section, given structured
job attributes as input using mT5, the multi-
lingual version of the state-of-the-art T5 trans-
former model. While transformers are accu-
rate at generating coherent text, they can strug-
gle with correctly including structured (input)
data in the generated text. Including this input
data correctly is crucial for vacancy text genera-
tion; otherwise, job seekers may be misled. To
evaluate how the model includes the different
types of structured input, we propose a novel
domain-specific metric: ‘input generation ac-
curacy’. Our metric aims to address the short-
comings of Relation Generation, a commonly
used evaluation metric for data-to-text genera-
tion that relies on string matching, as our task
includes evaluating generated texts based on
binary and categorical inputs. Using our novel
evaluation method, we measure how well the in-
put is included in the generated text separately
for different types of inputs (binary, categorical,
numeric), offering another contribution to the
field. In addition, we evaluate how accurately
the mT5 model generates texts in the requested
languages. Our experiments show that mT5 is
highly accurate at generating texts in the cor-
rect (requested) languages, and at handling seen
categorical and binary inputs correctly. How-
ever, mT5 performed worse when generating
text from unseen city names or working with
numeric inputs.

1 Introduction

Integrating Natural Language Processing (NLP)
solutions to improve the human workforce offers
great opportunities for process automation (Devara-
jan, 2018). Such process automation can be to
automate the writing of parts of the vacancies us-
ing the given structured data. This research was
carried out with Randstad Netherlands, a Dutch HR

services company that provides vacancies in Dutch
and English.

Natural Language Generation (NLG) is the sub-
field of NLP focusing on automatic text writing.
Text generation tasks can be categorized depending
on the input into text-to-text generation (e.g., text
translation) and data-to-text generation (e.g., the
generation of Wikipedia biographies). Generating
vacancy text falls under the data-to-text generation
category, since particular job-specific information
(for example: MINSALARY = 2500, MAXSALARY =
2700, SALARYTYPE = ’per month’) is provided
as input and a coherent sentence that combines the
given information must be generated as the output
(for example ’You will receive between 2500 and
2700 euros on a monthly bases’). Early data-to-
text generation approaches used hand-engineered
templates (Kukich, 1983; McKeown, 1992; McRoy
et al., 2000) to generate texts. These templates
can be intuitively explained as a series of written
text elements, with certain segments serving as the
template’s ’backbone’ and the remaining segments
being filled up with information from the struc-
tured data (Wang and Cardie, 2013). From the
previous example: ’You will receive between 2500
and 2700 euros on a monthly bases’ the follow-
ing template can be created ’You will receive be-
tween <MINSALARY> and <MAXSALARY> euros
on a monthly bases’. Such simple (template-based)
method was used as the baseline for this research.
While this solution is computationally cheap, fast
and the inputs will be correctly included, a lot of
manual effort is required to create the templates
and the generated texts will be very repetitive.

Transformer models are a type of neural network
architecture that use transfer learning. Transfer
learning is the technique where these models are
initially trained (pre-trained) on a large unlabeled
text dataset and some supervised tasks. The ’knowl-
edge’ learned through pre-training is then reused
on the new task, making transformer methods cur-

rently the most effective solution for text generation
(Devlin et al., 2019). While there is no transformer
model available that was pre-trained on data-to-text
generation tasks, recent research in (Kale and Ras-
togi, 2020) showed that transformer models - that
were pre-trained on text-to-text generations tasks
- outperform traditional (non-transformer) neural
network solutions for data-to-text generation task
after fine-tuning. Based on this finding and the
fact that our dataset is multilingual, we used the
multilingual version of T5, mT5 (Xue et al., 2021).
In contrast to the template-based method, trans-
formers can provide a wide range of text variation.
However, when generating text, transformers pick
the next word with some randomness, thus they are
less accurate at including the input correctly.

This paper investigates how the benefit sections
of vacancies (namely: salary, hours, contract and
location) can be generated using mT5. Our con-
tribution is three-fold. On one hand, we use mT5
in a new domain, with a relatively small and pro-
prietary dataset - that contains many noise and in-
correct samples - in a multilingual setting. On the
other hand, we confirm the importance of domain
specific evaluation metrics in data-to-text gener-
ation, by analyzing - with the metrics developed
by us - how accurate mT5 is in terms of includ-
ing the input correctly in the generated text. We
also investigate how creating more training data
(through translation and generating synthetic sam-
ples) can improve this accuracy. Focusing on in-
cluding the input correctly is particularly important
in this domain, where incorrect wages, or stating
hourly salaries instead of monthly can be mislead-
ing to candidates.

This paper focuses on answering the following
research question:

RQ1 To what extent can the state-of-the-art mul-
tilingual text-to-text generation transformer,
mT5 (Xue et al., 2021) be used to generate
the benefit sections of vacancies in a multi-
linguistic environment?

To answer this research question we aim to an-
swer the following sub-questions:

RQ1.1 How accurate is mT5 in terms of gener-
ating the text in the correct language for the
benefit sections of vacancies?

RQ1.2 When using new domain specific metrics
to measure the input generation accuracy, how

does mT5 perform, in terms of including dif-
ferent types of inputs (numerical, binary, cate-
gorical) in the generated text?

RQ1.3 How can creating extra training data by
translating the training samples automatically
and generating synthetic training data increase
the accuracy of the model regarding language
and input generation?

2 Related Work

The current state-of-the art solutions in text gener-
ation are transformer models that rely on transfer
learning, where a model is initially pre-trained on
a large dataset, before being fine-tuned on a down-
stream task (for example text summarization). Pre-
training on a large, unlabelled dataset is important
for transformer models, because during this pre-
training the model learns the basics of language.
T5 transformer was proposed with a new dataset by
Google Raffel et al. (2020). This so called Colos-
sal Clean Crawled Corpus (C4)* is a thoroughly
cleaned massive text dataset, scraped from many
websites for pre-training the model. The model is
classified as text-to-text, since both the input and
output are always text strings. To define which task
(for example text summarization) the model should
perform, a task-specific prefix was appended to
the input during the pre-training. This prefix is
simply a short synopsis of the task that is subse-
quently used throughout fine-tuning to teach the
model a new task. This same prefix is then used to
specify what task to perform when employing the
model. Such a prefix may be ’Translate English
to German:’ (for machine translation) or ’Summa-
rize’ (for text summarization) (Raffel et al., 2020).
Thanks to this task-specific prefix and the large pre-
training dataset, the model is adaptable enough to
be fine-tuned on different downstream tasks with
the same loss function and hyperparameters.

2.1 Transformer-based data-to-text
generation application domains

All relevant transformer based data-to-text research
have been conducted in three domains (sport game
summaries, open and closed domain Wikipedia).
The researches in the Wikipedia domain use ToTTo
(Parikh et al., 2020) and WebNLG † (Gardent et al.,
2017; Zhou and Lampouras, 2020; Castro Ferreira
et al., 2020) datasets with training sizes of 120K

*https://www.tensorflow.org/datasets/catalog/c4
†https://webnlg-challenge.loria.fr/challenge_2020

and 25.3K. The best performing model for the
ToTTo dataset is a simple fine-tuned T5 model
(Kale and Rastogi, 2020). For the WebNLG do-
main the best one is T5 with some adjustment to
control the generation by including conditional,
input-dependent information in the prefixes (Clive
et al., 2021). This domain has received more at-
tention than the others for multilingual data-to-text
generation (Moussallem et al., 2020). Agarwal
et al. (2020) found that by fine-tuning the model
in two languages via machine translation (on the
WebNLG dataset), a bilingual T5 model can out-
perform two separate monolingual T5 models. We
use an equivalent strategy for enhancing the mul-
tilingual model by automatically translating the
training samples.

The last domain - sport game summaries - uses
the RotoWire dataset (Wiseman et al., 2017) with
4.9K training samples to generate NBA basketball
game summaries from the structured game scores.
An intriguing transformer-based approach (Gong
et al., 2019) demonstrated how producing syntactic
training data by replacing the scores with new, syn-
thetic values improves performance. We use the
same concept in this paper.

Recently, Qin et al. (2022) proposed a neural
approach to generate the requirements section of
the job description. This research however is not
a data-to-text generation study, because it focuses
on generating the requirements for jobs (such as
the required skills), based on the fluent text of the
tasks section of the job descriptions. Our research
concentrates on a different task within the domain
by generating the benefit section of the vacancies.
We use a transformer model and a data-to-text ap-
proach on a bilingual dataset, which is highly unbal-
anced (having about 95% of the samples in Dutch)
and diverse regarding the data types (numeric, cate-
gorical, binary), which sets the research apart from
previous work.

2.2 Existing evaluation methods

Typical quality of text generation metrics are Bilin-
gual Evaluation Understudy (BLEU) score (Pap-
ineni et al., 2002), Recall-Oriented Understudy for
Gisting Evaluation (ROUGE) score (Lin, 2004) and
Metric for Evaluation of Translation with Explicit
ORdering (METEOR) score (Lavie and Agarwal,
2007). ROUGE measures the recall by concentrat-
ing on how many n-grams of the reference (hu-
man written text) appeared in the generated text,

whereas BLEU measures precision of the appear-
ing n-grams by measuring on how much of the
output text appeared in the reference (Lin, 2004).
METEOR was proposed for machine translation to
improve the alignment with human judgement. The
metric computes the explicit word-to-word match
between the output and the reference, however it
has many properties that are missing from the previ-
ous metrics. METEOR performs stemming (using
the Porter Stemmer) and also takes synonyms into
consideration (Lavie and Agarwal, 2007). The tra-
ditional quality of text evaluation methods however,
fail to evaluate the generated text in terms of their
fidelity to the input data (Wiseman et al., 2017). To
solve this issue Relation Generation (RG) metric
was proposed in (Wiseman et al., 2017). The metric
measures how well the system includes the input,
however it assumes that the entities can be detected
in the generated text using string matching (Dhin-
gra et al., 2019). This is not the case for our task, be-
cause while some entities can be detected: like the
location (the city name), numbers are more prob-
lematic due to the monetary units. For example,
in the Netherlands the decimal point is indicated
by a comma instead of a period. Lastly, measuring
the binary variable (hidesalary) is not in any way
detectable by string matching only. Therefore, we
propose new rule based domain specific measures,
which we describe in subsection 3.6.

3 Methodology

3.1 Dataset

The internal dataset of Randstad Netherlands was
used for the research which contains both struc-
tured vacancy data (e.g., salary amount), which we
use as input for text generation, and the correspond-
ing human written vacancy texts (targettext),
i.e., the desired output of the text generation. We
focused on the following four benefit sections:
salary, location, hours and contract. Figure 1
shows an example for each of these benefit sec-
tions, using a vacancy for a Customer Service
Representative published on Randstad Netherlands’
website‡. Table 1 shows the 11 different input
fields and how each benefit section uses differ-
ent ones (except the language, which is used
for every section). Four data types are present
in the dataset: integer (min/maxhours) and non-
integer (min/maxsalary) numericals, categoricals

‡https://www.randstad.com/find-a-job/

https://www.randstad.com/find-a-job/

(location, contracttype, salarytype) and
binary (hidesalary, fixhour, fixsalary).

Figure 1: The figure illustrates the layout of the benefit
section on the website of Randstad Netherlands.

3.2 Template-based method
When designed properly, template-based models
always perform perfect in terms of including the
inputs and using the correct language. We imple-
mented a template-based method to compare the
performance of mT5 and to provide an alternative
solution to the transformer approach for this do-
main. The pipeline of this method starts by creating
a template of every targettext from the training
data, by replacing the numeric and the location
input values in the text with a token corresponding
to the feature name. (For example from the sample
’C2800 - C3000 gross per month’ we create a tem-
plate as ’ C<MINSALARY> - C<MAXSALARY>
gross per month’.) Next, we choose a set of tem-
plates for each combination of categorical data by
selecting the top five most common templates for
each combination from the training data. These pre-
vious steps are performed only once, whereas the
next step, the text generation, is performed every
time a new benefit section needs to be generated
with the method. As part of this text generation
step, for each sample a template is picked from the
correct combination and then, this picked template
is filled with the correct values by replacing the
feature tags with their values. The steps are the
same for every section and every combination of
categories has five templates. Appendix A contains
an example for the template-based method.

3.3 mT5 model
We used hugging face’s PyTorch implementation§

with the default tokenizer and default loss (cross-
entropy loss) to fine-tune the base version of the
mT5 model. For optimizer we used Adafactor with
the recommended setting by Shazeer and Stern
(2018). Similar to the task-specific prefix, the input

§https://huggingface.co/docs/transformers/
model_doc/mt5

for the mT5 model is provided in a text format. For
data-to-text generation, the input is typically pro-
vided by first including the feature name and then
the feature value. Because transformer models are
extremely sensitive to how the input is given (Lester
et al., 2021), we experimented for each section with
three distinct input formats during the fine-tuning
of the model. The only difference between the
inputs is how the feature name is represented in
the input. For each section the ’FEATURENAME’
token was changed to the feature name which we
want to include and the ’value’ token was replaced
by the value of the feature. For each of our three
formats, listed below, we present an example from
the location benefit section, where our only fea-
ture is the location and the value of the feature is
’Amsterdam’.

• input A: <FEATURENAME> value
example: <LOCATION> Amsterdam

• input B: FEATURENAME = value
example: LOCATION = Amsterdam

• input C:<FEATURENAME> value
</FEATURENAME>
example:<LOCATION> Amsterdam
</LOCATION>

For English text generation we used the prefix ’Gen-
erate in English’ and for Dutch ’Generate in Dutch’.
We specified the prefix and the input in English.

We fine-tuned the original dataset using each in-
put format and choose the best performing one
based on the input generation accuracy score
(the newly developed metrics explained in subsec-
tion 3.6). When fine-tuning the models on the trans-
lated and the synthetic dataset we used the same
input and prefix as on the original dataset. Our hy-
perparameter tuning consisted of finding the num-
ber of epochs that had the highest input generation
accuracy. For the generation, we set the sampling
parameter to True. Allowing sampling means that
the next word is randomly picked from the con-
ditional probability distribution, thus the model is
more diverse and does not generate the same sen-
tence for the same input, unless the random seed is
identical. This is important, because otherwise all
samples with the same input would have the same
generated text, making the outputs very repetitive
(for example every job that has 40 working hours,
which is quite common). For the text generation,
we also set the ’top_p’ parameter to 1 to ensure that
only the tokens whose combined probability adds

https://huggingface.co/docs/transformers/model_doc/mt5
https://huggingface.co/docs/transformers/model_doc/mt5

Relevant
benefit section Feature Description Data type Occurring values

All language Language of the vacancy text categorical (string) {English, Dutch}
Salary hidesalary Whether salary amount should be mentioned binary {True, False}

minsalary Lower limit of salary amount in euro numeric (float)
9.63 - 41.0 for hourly,
250 - 4500 for monthly

maxsalary Upper limit of salary amount in euro numeric (float)
9.7 - 45.0 for hourly,
250 - 6000 for monthly

fixsalary Whether minsalary and maxsalary are equal binary {True, False}
salarytype Frequency of payment categorical (string) {Monthly, Hourly}

Hours minhour Minimum working hours per week numeric (int) 2 - 55
maxhour Maximum working hours per week numeric (int) 2 - 55
fixhour Whether minhour and maxhour are equal binary {True, False}

Contract contracttype Type of offered contract categorical (string)
{Temporary, Temporary with a
possibility of fixed, Fixed}

Location location
City name of
work location

categorical (string) -

Table 1: Overview of the features in the dataset

up to 100% are kept for generation. Additionally,
we set ’top_k’ parameter to 10 to make sure to only
choose from the ten most probable tokens.

3.4 Generating extra training data

We applied two methods to generate extra training
data. One for producing additional examples in
each language (inspired by Agarwal et al. (2020))
by translating all English training samples to Dutch
and all Dutch training samples to English using the
Googletrans library¶. Then, we repeated the pre-
processing steps, removed the duplicated samples
and appended this new training set to our original
training set, approximately doubling our training
set and obtaining a balanced dataset in terms of lan-
guage. We refer to this training set as the translated
training set. For the second method (similarly to
Gong et al. (2019)), we generated synthetic data
for the sections with the numeric inputs (salary and
hours). We guaranteed that the range between the
lower and higher values (lower and higher bounds)
were not exceeded (for working hours and monthly
and hourly salary amount separately). After ran-
domly selecting the new numbers, we replaced the
original numeric values in the targettext to cre-
ate the new synthetic training samples. We rounded
every value to two decimals and ensured using the
correct monetary unit for the salary section. For the
hours section, we only picked from integer num-
bers, following the nature of the training data. We
created such synthetic training samples by replac-
ing values three times on every training sample
from the translated dataset. After creating the syn-
thetic data we performed the pre-processing steps

¶https://pypi.org/project/googletrans/

and removed any duplicates, thus we received an
approximately three times larger, balanced - re-
garding the language - dataset that included some
randomness and covered more numeric values than
our previous training sets. We then added this train-
ing set to our translated dataset, which we refer to
as synthetic training data in the rest of the paper.

3.5 Experimental setup

We split the data for each benefit section into train-
ing, validation and test sets with a 60-20-20% ratio.
Table 9 in Appendix C contains the sample sizes
for each benefit sections. The details about how
the random seed was set for different parts of the
workflow in order to ensure reproducibility and
fair comparison between models can be found in
Appendix D.

3.6 Evaluation metrics

3.6.1 Text Quality
To measure the quality of text, we use the BLEU-
1, BLEU-2, ROUGE-1, ROUGE-2 and METEOR
scores (previously explained in section 2). We only
use the BLEU and ROUGE scores up to two n-
grams because our sections are rather short (5.5
to 7 words on average). Additionally, we record
the size of vocabulary by automatically counting
the number of unique words in the generated texts
after removing all numeric values, and excluding
the city name for the location section. This way
we ensure that including a wrong input does not
change the size of vocabulary.

3.6.2 Language accuracy
A main goal of this study is to determine, whether
the mT5 model is reliable in terms of generating

https://pypi.org/project/googletrans/

text in the requested language. Thus, we compare
the requested language to the language of the gener-
ated text. We used the Lingua library|| for language
detection, as this library is suitable for detecting
language of short sentences specifically. To de-
termine the language accuracy we calculate the
percentage for each language where the detected
language matches the intended one.

3.6.3 Input generation accuracy
For the newly developed ’input generation accu-
racy’ metrics, we calculate the number of correct
samples divided by the number of all samples. The
correct samples are identified with predefined rules
with string matching. For the location section a
sample is considered correct if the city name is cor-
rectly included. For the contract section, we use a
collection of terms to classify the created text into
one of three potential categories (Temporary, Tem-
porary with a possibility of fixed, Fixed). For the
hours and salary sections we extract the numbers
from the generated text and compare them to the
input numbers. If there is any difference between
the two set of numbers we treat the sample incor-
rect. Furthermore we check whether each number
is only included once. This is especially crucial for
the fix salaries otherwise for example the following
text would be considered correct: ’You will work
between 40 and 40 hours’. For the salary section,
we also check whether the monetary unit is set prop-
erly (the decimal is separated with a comma) and
the rounding is correct (all integers are rounded
to whole numbers and non-integers to two deci-
mals). Additionally, we use string matching to
assess the categorical salarytype input genera-
tion accuracy. First, we lowercase the generated
text and then for example if the salary type is ’per
month’, we consider the sample correct if the gen-
erated text contains ’month’ but not ’hour’. As a
result, records are not only penalized if they in-
clude the wrong salary type, but also if they do not
contain the correct one. Finally, we measure the
binary input generation accuracy (for hidesalary)
by detecting whether any numeric values appear in
the generated text.

4 Results

Table 2 shows the results for each section. It shows
the input format (Input), epoch size (Epoch), qual-
ity of text scores (METEOR, BLEU-1, BLEU-2,

||https://pypi.org/project/lingua/

ROUGE-1, ROUGE-2), language accuracy scores
(English, Dutch), input generation accuracy (for
categorical, numerical and binary inputs), and vo-
cabulary size in words.

4.1 Location

Rows 1-3 in Table 2 show the results obtained for
the location benefit section. The best perform-
ing input format for mT5 (based on input gen-
eration accuracy) was ’FEATURE = value’ (in-
put B). A perfect language accuracy was already
achieved on the original dataset (row 2). By fine-
tuning the model on the translated dataset, we were
able to increase the input generation accuracy to
84.87% (row 3). mT5 fine-tuned on this trans-
lated data (row 3) reached similar results regarding
the METEOR score and slightly outperformed the
template-based method (row 1) in terms of BLEU-2
and ROUGE-2 score. Additionally, the size of vo-
cabulary was more than twice (315-339) for the
generated text when compared to the template-
based method (129).

4.2 Contract

As mentioned in section 3, we used the English
prefix value of the input when fine-tuning the mod-
els. However, in the case of the contract section
the English language accuracy remained zero even
after using the translated dataset for fine-tuning
(row 6 on Table 2). Then we fine-tuned the model
using a translated version of the prefix and the in-
put. For example for an English sample the prefix
was given as ’Generate in English’ and the input
format was ’CONTRACTTYPE = fix’, while for a
Dutch sample the prefix was specified as ’Gener-
eren in het Nederlands’ and the input was trans-
lated to Dutch and given as ’CONTRACTTYPE =
vast’. As shown on row 7, with the translated pre-
fix and input, the model was able to achieve high
language accuracy for English (92.31%) and a high
input generation accuracy (96.44%) too. Adding
the translated data (row 8), however was found un-
necessary as it resulted in a decrease in the cat-
egorical input generation accuracy (to 74.19%).
Overall, the transformer model achieved similar
results to the template-based method (row 4) re-
garding the language and the input accuracy, while
under performing in terms of the quality of text
scores. Furthermore, the used vocabulary by the
transformer had a 3.5 times larger size (170-263)
than the template-based method (77).

https://pypi.org/project/lingua/

Benefit
section Model Training

data Input Epochs METEOR BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 English
lang. acc.

Dutch
lang. acc.

Binary
input
gen. acc.

Categorical
input
gen. acc.

Numeric
input
gen. acc.

Size of
voc.

1 Location
Template-
based

Original - - 19.95 30.24 11.84 37.67 10.62 100.00 100.00 NA 100.00 NA 129

2 Location mT5 Original B 40 20.88 28.35 13.53 34.43 13.09 100.00 100.00 NA 76.97 NA 315
3 Location mT5 Translated B 50 20.33 27.77 13.40 32.36 11.87 100.00 100.00 NA 84.87 NA 339

4 Contract
Template-
based

Original - - 37.16 36.88 25.93 56.03 30.63 100.00 100.00 NA 100.00 NA 77

5 Contract mT5 Original C 15 25.43 26.42 14.43 34.81 15.12 0.00 99.54 NA 78.42 NA 219
6 Contract mT5 Trans. C 20 25.09 26.55 14.10 34.02 14.33 0.00 99.77 NA 66.63 NA 170
7 Contract mT5 Original B (tran.) 15 29.10 29.42 16.51 39.14 16.88 92.31 98.97 NA 96.44 NA 263
8 Contract mT5 Translated B (tran.) 15 26.71 27.37 15.02 34.85 15.28 92.31 99.77 NA 74.19 NA 224

9 Hours
Template-
based

Original - - 46.38 42.11 35.34 80.16 63.92 100.00 100.00 NA NA 100.00 51

10 Hours mT5 Original B 15 35.82 35.16 25.90 61.18 40.91 15.38 99.50 NA NA 83.17 137
11 Hours mT5 Translated B 30 40.22 37.92 29.01 60.06 41.30 92.31 100.00 NA NA 77.51 184
12 Hours mT5 Synthetic B 50 42.62 39.83 31.69 63.38 45.28 100.00 99.83 NA NA 98.06 163

13 Salary
Template-
based

Original - - 30.45 32.03 22.34 60.80 38.09 100.00 100.00 100.00 100.00 100.00 112

14 Salary mT5 Original A 30 28.27 31.16 20.53 46.82 28.10 96.88 99.85 89.71 99.06 85.31 528
15 Salary mT5 Translated A 40 29.20 31.67 20.56 48.22 28.57 96.88 99.93 99.21 97.44 84.23 585
16 Salary mT5 Synthetic A 40 27.70 29.74 18.70 46.32 25.89 100.00 99.93 99.93 97.44 68.06 607

Table 2: The results for each benefit section. NA refers to ’Not Applicable

4.3 Hours

For the experiments on the hours section, the
best performing input format was B; ’FEA-
TURE=value’. The results show that by using the
translated dataset, the model reaches a significantly
higher language accuracy, with English language
accuracy improving from 15.38% to 92.31% (row
11 on Table 2). However, by using the translated
training set for fine-tuning, and having two samples
for the same number, the model’s input accuracy de-
creased to 77.51% (row 11). By using the synthetic
training data for fine-tuning, thus adding more ran-
domness, the input accuracy increased to 98.06%
and approached the template-based method, while
keeping a high language accuracy (row 12). More-
over, the experiments show that the transformers
use about 3 times more words (137-184) than the
template-based method (51).

4.4 Salary

For the salary section the best performing input
format was input A. Row 13-16 on Table 2 illus-
trates that a high language accuracy (>96.88%)
is achieved by the transformer regardless of the
training data. While the categorical input gener-
ation accuracy was not significantly affected by
the training data (decrease of 1.62%), the binary
input accuracy improved (by 9.5%) with added
translated data (row 15). In contrast, when fine-
tuning on more training data, numeric input accu-
racy dropped, in particular with synthetic data (by
16.17%, row 16). Lastly, the vocabulary size is
around 2.5 times higher for transformers (528-607)
compared to the template-based method (127).

5 Analysis and discussion

5.1 Language accuracy

Table 2 shows how fine-tuning the model on dif-
ferent training data affected the language accuracy
for each benefit section. The Dutch language ac-
curacy was high (between 98.97% and 100%) for
each benefit section regardless of the training data.
In terms of English language accuracy, the loca-
tion and salary sections performed well (with a
language accuracy between 96.9% and 100%) re-
gardless of the training data. While the extra train-
ing data was beneficial for the hours section (and
lead to an accuracy of 92.3% from 15.4%), it was
ineffective for the contract section, keeping the En-
glish language accuracy at zero. Meanwhile, by
translating the input and the prefix, a good level of
English language accuracy (92.31%) was obtained
for the contract section too. While intuition sug-
gests that language accuracy may be affected by
the volume of training samples - as Dutch samples
account for approximately 95% of each section -
this idea cannot be supported, because both the
contract and hours sections have approximately
3-4 times more training data (and approximately
2.5-3.5 times more English samples in the train-
ing data), than the location section, which was still
able to reach a perfect English language accuracy
with such a small training set as 454 samples (from
which 20 were English).

5.2 Input generation accuracy

Appendix F contains three correct and three incor-
rect examples for each type of input generation
(categorical, binary and numeric) and each benefit
section.

Location The categorical input in the location
benefit is unique because the input can only be
generated in one single way (mentioning the city
name can not be done differently). Row 2 on Ta-
ble 2 shows that when fine-tuned on the original
training data, the model achieved an input accuracy
of 76.96%. Using the translated training data for
fine-tuning, significantly increased this score and
resulted in an accuracy of 84.87%. However, this
is still a long way from the rule-based approach.
Previous work (Kale and Rastogi, 2020) pointed
out that data-to-text generation algorithms perform
worse on test samples that have an unseen input.
This decrease was major, around 23.2% (with an ac-
curacy of 60%) for a neural-based model, but only
2% (with an accuracy of 90%) for T5 transformer,
when applied in the closed Wikipedia domain (Kale
and Rastogi, 2020). Our test set had five cities that
were unseen; not present in the training data. The
input accuracy for the 9 samples, which used one
of these unseen cities, was 44.44%. Whereas the
input accuracy for the samples with the seen input
was 96.06%. In case of some samples with unseen
inputs, the model generated text with a new city
name. For example, when the input was ’Zwaag’
the model generated the following sentence ’Pal
gelegen achter her centraal station Zwaaijdijk’,
naming a non-existing city. The samples with un-
seen inputs in our dataset are very specific, small
Dutch city names, that were allegedly not part of
the corpus mT5 was trained on, which could ex-
plain why transfer learning had a major impact
when using the closed domain Wikipedia dataset
(WebNLG) in the related work (Kale and Rastogi,
2020), but not in our domain.

Contract and salary We see a high accuracy for
categorical input generation (96.44% and 99.06%)
at the contract and salary sections, using only the
original training data. Fine-tuning on extra training
data had no significant impact on salary, however
adding translated training data caused a drop in cat-
egorical input accuracy by 25.25% for the contract
section.

Binary input generation The salary section of
Table 2 reveals that fine-tuning the model on the
translated dataset significantly improves binary in-
put generation accuracy (from 89.71% to 99.21%).
This accuracy nears perfection, which demonstrates
the transformer can learn domain knowledge by
learning to hide the salary amount. Some of the

correctly generated text for hidden salaries were:
’Based on experience’, ’A good salary and excellent
reimbursement overtime’.

Numeric input accuracy The hours section of
Table 2 illustrate that fine-tuning on the translated
training set resulted in some decrease (5.66%, from
83.17% to 77.51%) for the hours benefit section
regarding the numeric input generation accuracy.
This is not surprising given that by translating, all
covered numbers in the training samples were cov-
ered roughly twice as much. However, by using the
synthetic dataset for training the distribution of the
samples in the training set was very even (because
randomly choosing the values during the method of
creating the synthetic data) and the model reached
a 98.06% input generation accuracy. Compared
to prior work (Gong et al., 2019) where includ-
ing synthetic data lead to an accuracy increase of
2.6%, in our case accuracy increased by 14.89%.
However, this strategy of fine-tuning on synthetic
data did not work for the salary section. The ac-
curacy of numeric input generation actually de-
creased significantly (from 85.31% to 68.06%).
This might be explained by the nature of the data,
because the hours section only includes integer
numbers and covers a very limited range of num-
bers (between 2 and 55 in the training data). On
the other hand the salary section contains monthly
and hourly salaries too. Monthly salary are integers
with a wide range (the range in the training data is:
250 - 6000) while the hourly wages are rounded to
two decimals and cover the range (in the training
data) between 9.63 - 45.00. A possible explanation
might be that the original dataset focuses on certain
numbers. The proportion of the unique numbers
(for both minimum and maximum and hourly and
monthly salaries) was between 20.5% and 36.05%.
There are some patterns in the data, which were not
matched when adding synthetic data. For example,
next to understandably common decimal values for
hourly salaries (0, 50, 99) other values (e.g., 48,
97, 29 or 8) are common too. This could be caused
by collective labor agreements, minimum wage,
yearly salary increases, or inflation correction.

5.3 Limitations

One limitation of our work is the unbalanced nature
of the original dataset in terms of language. While
this provides a unique opportunity and challenge, it
also leads to having only very few (between 2-64)
English samples for some sections. These small

sample sizes may make our findings less reliable
regarding the English language accuracy. A sec-
ond limitation concerns our focus on the benefit
sections of vacancies. These sections are rather gen-
eral and typically do not vary between jobs as much
as other vacancy sections (e.g., the task section),
which might make our finding less generalizable.
However, due to absence of structured input we
were unable to study other vacancy sections.

6 Conclusion

Although the amount and the imbalanced nature of
the dataset (in terms of language) prevent us from
drawing definite conclusions, our analysis reveals
several insights into the behavior of the mT5 model,
which we use to answer our three sub-questions.
RQ1.1 First, we focus on finding how accurately
mT5 generates text in the correct language. Over-
all, we found that with the right parameter tuning,
prefix, and input, mT5 performs very well in gen-
erating text in the correct language.
RQ1.2 To find how accurate mT5 is at including
different types of inputs (numerical, binary, cate-
gorical) correctly in the generated text, we used
our own new, domain-specific metrics in the gen-
erated text. We conclude that while mT5 is highly
accurate at generating from binary inputs, and seen
categorical inputs, it struggles with unseen categor-
ical and numeric inputs.
RQ1.3 Finally, we explore how fine-tuning mT5 on
translated and synthetic data affects the language
and input generation accuracy. We found that fine-
tuning mT5 on additional training data (translated
and synthetic) can lead to major improvements,
however the rate of which strongly depends on the
nature of the task and the distribution of numeric
samples in the dataset.

In conclusion, we evaluated how accurately mT5
includes inputs in the generated text with custom
metrics developed by us, on a novel task in the job
description domain. We applied transfer learning
on a new and unique dataset in terms of volume and
language balance. While our findings are mostly
in line with earlier studies, we demonstrate that
language accuracy, input generation accuracy, and
the effectiveness of extra training data are highly
dependent on the nature of data and task. Overall,
even though the model may not be as accurate as
a template-based approach, it can be employed un-
der human supervision to generate benefit sections
of vacancies, and will yield more diverse outputs.

Additionally, when using the model, the users can
rely on custom evaluation metrics developed by us.

Promising future work directions include using
more languages and other sections of vacancy texts.
For example, while the requirements section of the
vacancies currently do not have structured input
data available; these inputs may be extracted au-
tomatically using a skill extraction model, such
as LinkedIn’s Job2Skills model (Shi et al., 2020).
Extending the study to novel sections of the va-
cancy could give a great opportunity to observe
how transformers work with categorical input with
a wider range of values than our salarytype and
contracttype, while still being more general than
the location input. Another intriguing step is to
investigate how automatically generated text af-
fects the accessibility of job descriptions. Finally,
evaluating the models with the recruiters would be
a logical next step too.

References
Oshin Agarwal, Mihir Kale, Heming Ge, Siamak Shak-

eri, and Rami Al-Rfou. 2020. Machine translation
aided bilingual data-to-text generation and seman-
tic parsing. In Proceedings of the 3rd International
Workshop on Natural Language Generation from the
Semantic Web (WebNLG+), pages 125–130, Dublin,
Ireland (Virtual). Association for Computational Lin-
guistics.

Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh,
Chris van der Lee, Simon Mille, Diego Moussallem,
and Anastasia Shimorina. 2020. The 2020 bilingual,
bi-directional WebNLG+ shared task: Overview and
evaluation results (WebNLG+ 2020). In Proceed-
ings of the 3rd International Workshop on Natu-
ral Language Generation from the Semantic Web
(WebNLG+), pages 55–76, Dublin, Ireland (Virtual).
Association for Computational Linguistics.

Jordan Clive, Kris Cao, and Marek Rei. 2021. Con-
trol prefixes for text generation. arXiv preprint
arXiv:2110.08329.

Yuvaraja Devarajan. 2018. A study of robotic pro-
cess automation use cases today for tomorrow’s busi-
ness. International Journal of Computer Techniques,
5(6):12–18.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-
Wei Chang, Dipanjan Das, and William Cohen. 2019.
Handling divergent reference texts when evaluating
table-to-text generation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4884–4895, Florence, Italy. Asso-
ciation for Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating training
corpora for nlg micro-planning. In 55th annual meet-
ing of the Association for Computational Linguistics
(ACL).

Li Gong, Josep Crego, and Jean Senellart. 2019. En-
hanced transformer model for data-to-text generation.
In Proceedings of the 3rd Workshop on Neural Gen-
eration and Translation, pages 148–156, Hong Kong.
Association for Computational Linguistics.

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, pages 97–102, Dublin, Ireland.
Association for Computational Linguistics.

Karen Kukich. 1983. Design of a knowledge-based re-
port generator. In Proceedings of the 21st Annual
Meeting on Association for Computational Linguis-
tics, ACL ’83, page 145–150, USA. Association for
Computational Linguistics.

Alon Lavie and Abhaya Agarwal. 2007. Meteor: An
automatic metric for mt evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the second workshop on statistical machine
translation, pages 228–231.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Kathleen McKeown. 1992. Text generation. Cambridge
University Press.

Susan W McRoy, Songsak Channarukul, and Syed S
Ali. 2000. Yag: A template-based generator for real-
time systems. In INLG’2000 Proceedings of the First
International Conference on Natural Language Gen-
eration, pages 264–267.

Diego Moussallem, Dwaraknath Gnaneshwar, Thiago
Castro Ferreira, and Axel-Cyrille Ngonga Ngomo.
2020. Nabu – multilingual graph-based neural rdf
verbalizer. In The Semantic Web – ISWC 2020, pages
420–437, Cham. Springer International Publishing.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Dipan-
jan Das. 2020. ToTTo: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1173–1186, Online. As-
sociation for Computational Linguistics.

Chuan Qin, Kaichun Yao, Hengshu Zhu, Tong Xu,
Dazhong Shen, Enhong Chen, and Hui Xiong. 2022.
Towards automatic job description generation with
capability-aware neural networks. IEEE Transac-
tions on Knowledge and Data Engineering.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596–4604. PMLR.

https://aclanthology.org/2020.webnlg-1.13
https://aclanthology.org/2020.webnlg-1.13
https://aclanthology.org/2020.webnlg-1.13
https://aclanthology.org/2020.webnlg-1.7
https://aclanthology.org/2020.webnlg-1.7
https://aclanthology.org/2020.webnlg-1.7
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P19-1483
https://doi.org/10.18653/v1/P19-1483
https://doi.org/10.18653/v1/D19-5615
https://doi.org/10.18653/v1/D19-5615
https://aclanthology.org/2020.inlg-1.14
https://aclanthology.org/2020.inlg-1.14
https://doi.org/10.3115/981311.981340
https://doi.org/10.3115/981311.981340
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Baoxu Shi, Jaewon Yang, Feng Guo, and Qi He. 2020.
Salience and market-aware skill extraction for job
targeting. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, pages 2871–2879.

Lu Wang and Claire Cardie. 2013. Domain-independent
abstract generation for focused meeting summariza-
tion. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1395–1405.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Giulio Zhou and Gerasimos Lampouras. 2020.
WebNLG challenge 2020: Language agnostic delex-
icalisation for multilingual RDF-to-text generation.
In Proceedings of the 3rd International Workshop
on Natural Language Generation from the Semantic
Web (WebNLG+), pages 186–191, Dublin, Ireland
(Virtual). Association for Computational Linguistics.

https://doi.org/10.18653/v1/D17-1239
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://aclanthology.org/2020.webnlg-1.22
https://aclanthology.org/2020.webnlg-1.22

Appendix A Template-based method

This appendix helps to understand the template-based method described in subsection 3.2. It contains the
pipeline for the template-based method with an example (Figure 2) as well as the combinations for the
templates.

Figure 2: The pipeline of the template-based method with an example for the salary benefit section. In the first step
the values of all non categorical features get replaced by the feature name resulting in a template for every training
sample. Next, for all combination the five most common template gets extracted. In the third step, one of the chosen
template gets randomly picked which then is filled in by replacing the non categorical feature names with their
values in step 4.

A.1 Template combinations
This Section contains the combination of templates for each benefit section. Table 3 shows that the

location section only had two different types of templates, the contract and the hours benefit sections had
six (show on Table 4 and Table 5), while the salary benefit section had ten different types (shown on

Table 6).

Combination Language
1 English
2 Dutch

Table 3: There are 2 combinations for the location section, each combination contains 5 templates.

Combination Language Fix hour Full time
1. English False False
2. English True False
3. English True True
4. Dutch False False
5. Dutch True False
6. Dutch True True

Table 4: There are 6 combinations for the hours section, each combination contains 5 templates.

Combination Language Contract type
1 English Temporary
2 English Temporary with a possibility to fixed
3 English Fixed
4 Dutch Temporary
5 Dutch Temporary with a possibility to fixed
6 Dutch Fixed

Table 5: There are 6 combinations for the contract section, each combination contains 5 templates.

Combination Language Hidesalary Fixsalary Salary type
1. English True - -
2. Dutch True - -
3. English False True Hourly
4. English False True Monthly
5. Dutch False True Hourly
6. Dutch False True Monthly
7. English False False Hourly
8. English False False Monthly
9. Dutch False False Hourly
10. Dutch False False Monthly

Table 6: There are 10 combinations for the salary section, each combination contains 5 templates.

Appendix B mT5 model

For optimizer we used the Adafactor optimizer, with the default parameters suggested by Shazeer and
Stern (2018). Table 7 shows the values of the parameters.

Parameter Parameter name Set value
ϵ1 regularization constants for square gradient 10−30

ϵ2 parameter scale 10−3

d threshold of root mean square of final gradient update 1
β̂2t decay rate 1− t−0.8

α external learning rate 10−3

Table 7: The hyperparameter settings for the Adafactor optimezer based on Shazeer and Stern (2018)

Appendix C Details of dataset, pre- and postprocessing steps

First, we fixed the monetary units and the hidesalary binary field for the salary benefit section. Then,
we excluded samples that were not correct based on the language and at including the input (for which we
used our own input accuracy metrics explained in subsection 3.6).
In Table 8, we show the set of words for each benefit section that were removed before running the
language detection on the generated text.

Section Words removed
for language detection

Location location from input
Contract words : contract, direct, per, week, of, permanent
Hours -
Salary per, week

Table 8: Words removed for each section before running the language detection on the generated text

In Table 9, we show the size of training, validation and test set for each benefit sections.

Benefits
section

Size of
training set

Size of
validaiton set

Size of
test set

Location 454 152 152
Contract 2696 899 899
Hours 1854 618 618
Salary 4197 1399 1399

Table 9: Size of training, validation and test set for each benefit section

In Table 10, we show the number of English and Dutch samples for each benefit section in the training,
validation and test set.

Section Samples in training set Samples in validation set Samples in test set
All Dutch English All Dutch English All Dutc English

Location 454 434 20 152 148 4 152 150 2
Contract 2696 2626 70 899 881 18 899 873 26
Hours 1854 1807 47 618 608 10 618 605 13
Salary 4197 4061 136 1399 1353 46 1399 1335 64

Table 10: The number of samples for each section in the training, validation and test set. The sample size is further
braked down regarding the language.

Appendix D Random seed

The random seed was set to 1 for the splitting the dataset into training, validation and test set. The
validation set was used for hyperparameter tuning and deciding which input format to use. Additionally,
because both the template-based method and the transformer method has some randomness we assigned a
random integer number between 1 and 9999 to every sample in the validation and the test set, which we
then used as the random seed for generating the text, for the template-based method and the mT5 models.
This way we ensured reproducibility and fair comparison between models. Additionally, we set the
random seed for the transformer models to be 1 before fine-tuning the models.

Appendix E Rule-based classifier for the contract type evaluation

The following algorithm contains the rule-based classifier that was used to detect the contract type in the
generated text for the contract benefit section.

Algorithm 1 Contract type classifier
words = set of lower case words of generated text
if any words in {’prospect’, ’possibility’ , ’opportunity’ , ’chance’, ’kans’, ’mogelijkheid’ , ’uitzicht’ ,
’view’, ’option’} then

return Temporary with a possibility to fixed
else if any words in { ’temporary’, ’tijdelijk’ } then

return Temporary
else if any words in {’permanent’, ’direct’, ’directly’, ’long’, ’vast’, ’dienstverband’, ’jaarcontract’}
then

return Fixed
end if

Appendix F Examples

The following tables contain 3 correct and 3 incorrect examples for each type of input (categorical, binary,
numeric) for each section. The Dutch samples have been translated by the authors to English for a better
understanding of the examples.

F.1 Examples of categorical input generation

Examples of correct samples
from test set

Examples of incorrect samples
from test set

Input Output Input Output

LOCATION = Veghel
Super mooi bekend bedrijf in Veghel
(Translated: Super nice well-known company in Veghel)

LOCATION = RIJEN
Werken in de omgeving van Rijk
(Translated: Work in the area of Rijk)

LOCATION = Schiphol
Werken in de dynamische omgeving Schiphol
(Translated: Work in the dynamic environment of Schiphol)

LOCATION = Zwaag
Pal gelegen achter het centraal station Zwaaijdijk!
(Translated: Located right behind Zwaaijdijk central station!)

LOCATION = Amstelveen
Werken op een mooie locatie in Amstelveen
(Translated: Work at a beautiful location in Amstelveen)

LOCATION = Oud Gastel
Een baan in de Hoeksche Waard: Oud-Beijerland
(Translated: A job in the Hoeksche Waard: Oud-Beijerland)

Table 11: Correct and incorrect examples of the categorical location generation from the test set

Examples of correct samples
from test set

Examples of incorrect samples
from test set

Input Output Input Output
<CONTRACTTYPE>temporary with
a view to permanent

The chance of permanent contract
<CONTRACTTYPE>temporary with
a view to permanent

Fulltime with our client

<CONTRACTTYPE>temporary with
a view to permanent

Opportunity to get a permanent contract <CONTRACTTYPE>fix
Een temporary baan
(Translated: A temporary job)

<CONTRACTTYPE>vast
Direct op contract bij het bedrijf
(Translated: Direct contract with the company)

<CONTRACTTYPE>fix The possibility to get a permanent contract

Table 12: Correct and incorrect examples of the categorical contract generation from the test set

Examples of correct samples
from test set

Examples of incorrect samples
from test set

Input Output Input Output

<FIXSALARY>2100.0 <SALARYTYPE>per month A salary of C 2100 gross per month.
<FIXSALARY>10.0
<SALARYTYPE>per hour

Salaris C10.
(Translated: Salary C10.)

<MINSALARY>2600.0 <MAXSALARY>3000.0
<SALARYTYPE>per month

Salary between C 2600 and C 3000
gross per month.

<MINSALARY>11.0 <MAXSALARY>12.0
<SALARYTYPE>per hour

Salaris tussen de C11,- en C12
(Translated: Salary between C11 and C12.)

<FIXSALARY>14.0 <SALARYTYPE>per hour Good hourly rate of C 14 gross per hour. <FIXSALARY>11.5 <SALARYTYPE>per hour
Salaris Bespreekbaar, per week betaald!
(Translated: Salary Negotiable, paid per week!)

Table 13: Correct and incorrect examples of the categorical salary generation from the test set

F.2 Examples of binary input generation

Examples of correct samples
from test set

Examples of incorrect samples
from test set

Input Output Input Output

<HIDESALARY>TRUE Based on experience <HIDESALARY>TRUE
Een salaris van C11,- bruto per uur!
(Translated: A salary of C11 gross per hour!)

<HIDESALARY>TRUE A good salary and excellent reimbursement overtime <HIDESALARY>TRUE
Een salaris van C11,49 per uur
(Translated: A salary of C11.49 per hour)

<HIDESALARY>TRUE A good salary in accordance with the collective labor agreement <HIDESALARY>TRUE
Een loon van C 16,- per uur
(Translated: A wage of C16 per hour)

Table 14: Correct and incorrect examples of the binary salary generation from the test set

F.3 Examples of numeric input generation

Examples of correct samples
from test set

Examples of incorrect samples
from test set

input output inpug output

FIXHOUR = 32 Work week of 32 hours FIXHOUR = 32
De mogelijkheid om 32 ur tot 32 uur te werken
(Translated: Possibility to work from 32 to 32 hours)

MINHOUR = 24| MAXHOUR = 40 24 to 40 hours, choose how many hours you work MINHOUR = 10| MAXHOUR = 15
11-15 uur, vraag naar het rooster.
(Translated: 11-15 hours, ask for the schedule.

MINHOUR = 32| MAXHOUR = 40 A working week from 32 to 40 hours (your preference) FIXHOUR = 38
Een werkweek tussen de 38 en 38 uur.
(Translated: A work week between 38 and 38 hours.)

Table 15: Correct and incorrect examples of the numeric hours generation from the test set

Examples of correct samples
from test set

Examples of incorrect samples
from test set

Input Output Input Output

Montlhy <FIXSALARY>500.0 <SALARYTYPE>per month max. 500 euro gross per month
<MINSALARY>2400.0 <MAXSALARY>3100.0
<SALARYTYPE>per month

Salaris tussen de C2400 en C.- C3300 per maand
(Translated: Salary between C2400 and
C.- C3300 per month)

<FIXSALARY>500.0 <SALARYTYPE>per month Stage starting salary of C500 per month <FIXSALARY>2200.0 <SALARYTYPE>per month
Goed salaris van rond de C2200 en C2200 per maand!
(Translated: Good salary of around C2200
and C2200 per month!)

MINSALARY>3000.0 <MAXSALARY>3500.0
<SALARYTYPE>per month

Salary between C3000 and C3500 per month
<MINSALARY>2771.0 <MAXSALARY>3934.0
<SALARYTYPE>per month

Salaris tussen de C2110 en C3738 bruto per maand
(Translated: Salary between C2110
and C3738 gross per month)

Hourly FIXSALARY>11.0 <SALARYTYPE>per hour 11 euros per hour and shifts allowances <FIXSALARY>11.67 <SALARYTYPE>per hour
Een salaris van C11,62 bruto per uur
(Translated: A salary of C11.62 gross per hour)

<MINSALARY>14.27 <MAXSALARY>17.68
<SALARYTYPE>per hour

Salaris tussen de C14,27 en C17,68 per uur
(Translated: Salary between
C14.27 and C17.68 per hour)

<MINSALARY>12.42 <MAXSALARY>18.47
<SALARYTYPE>per hour

C12,42 - C18,57 per uur op basis van ervaring
(Translated: C12.42 - C18.57
per hour based on experience)

<FIXSALARY>11.5 <SALARYTYPE>per hour
Een lekker salaris van C11,50 per uur
(Translated: A nice salary of C11.50 per hour)

<FIXSALARY>11.27 <SALARYTYPE>per hour
Uurloon van C12,27
(Translated: Hourly wage of C12.27)

Table 16: Correct and incorrect examples of the numeric salary generation from the test set

