📅 November 12, 2011 • 🕐 19:50 • 🏷 Blog and Thesis (MSc)

The first steps towards creating graph-based text visualizations is thinking about how I would like to visually represent the structure of the information I extract from texts. I have included a preliminary example of the output at the bottom of this page. I use three different methods of extracting concepts from a piece of text:

  1. Counting literal occurrences of concepts (from ontologies)
  2. Finding related concepts by textual comparison of the text to the concepts’ descriptions
  3. Finding related concepts by exploring the ontological structure (aka relating concepts within one ontology by finding paths and parents, and possibly relevant neighbours)

The primary distinction I want to make is that of relevance (aka ‘likeliness of topic’). In the case of 1 this would be the frequency of the word (more occurrences = more relevant concept), in the case of 2 this is the calculated similarity of the source text to the concepts’ descriptions (which is a number between 0 and 1). In the case of 3, this would be by ‘connections’: the more concepts the concepts I find by exploring an ontologies’ structure would link, the more relevant this found concept would be. I want to model this distinction by node’s size: the more relevant a concept is, the bigger I want to draw the concept in the graph.

The second distinction is that of literal to non-literal (1 being literal, 2 and 3 being non-literal). I want to model this distinction by style: literal concepts will be drawn as a filled circle, non-literal concepts as outlined circles.

The third distinction is that of the concepts’ source: from which ontology does a concept originate? This distinction will be modeled by color: each ontology (of the six I use) will have its distinct color. Explored concepts (from step 3) such as parents and shared parents will be colored in distinct colours as well, since they are connected in the graph to the coloured nodes, their source will implicitly be clear.

Since Gephi doesn’t fully support Graphviz’ DOT-language, and the graph library I use in Python conveniently parses graphs in DOT, I use Graphviz to directly render the results.

An issue I came across with the scaling (to represent relevance), is that I’m working with multiple measures: frequency of literal words (1), percentage of text-similarity (2), and degree-count. In an effort to roughly equalize the scaling factor, I decided to use static counters. Each node gets an initial size of 0.5 (0.4 for shared parents, and 0.3 for parents). For each occurrence of a literal word, I add 0.05. For the text-similarity, I add the percentage of 0.5 (26% similarity = 0.5 + (0.5*0.26)). For the degree, I add 0.1 for each in-link the node receives. This is an initial attempt at unifying the results. Anyway, these are just settings I’m playing around with.

Examples


These are very rough examples, because:
  • I use the literal representation of the input text (as I have not yet determined the most suitable keyword extraction method)
  • I haven’t determined a proper ‘cut-off’ for the text similarity measure; currently it includes every concept it finds with similarity ≥ 25%.
  • It doesn’t yet fully incorporate step 3 (it includes parents, but not yet paths between nodes)
  • It doesn’t scale nodes according to in-links
  • There is no filtering applied yet (removing obsolete classes, for example).